axiom of dependent choice wikipedia - EAS

11,400,000 kết quả
  1. Xem thêm
    Xem tất cả trên Wikipedia

    Axiom of dependent choice - Wikipedia

    https://en.wikipedia.org/wiki/Axiom_of_dependent_choice

    In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis.

     ...

    Xem thêm

    Even without such an axiom, for any , one can use ordinary mathematical induction to form the first terms of such a sequence. The axiom of dependent choice says that we can form a whole (countably infinite) sequence this way.

     ...

    Xem thêm

    Unlike full , is insufficient to prove (given ) that there is a non-measurable set of real numbers, or that there is a set of real numbers without the property of Baire or without the perfect set property. This follows because the Solovay model satisfies ,

     ...

    Xem thêm
    Văn bản Wikipedia theo giấy phép CC-BY-SA
    Mục này có hữu ích không?Cảm ơn! Cung cấp thêm phản hồi
  2. Axiom of choice - Wikipedia

    https://en.wikipedia.org/wiki/Axiom_of_choice

    There are several weaker statements that are not equivalent to the axiom of choice, but are closely related. One example is the axiom of dependent choice (DC). A still weaker example is the axiom of countable choice (ACω or CC), which states that a choice function exists for any countable set of nonempty sets. These axioms are sufficient for many proofs in elementary mathematical analysis, and are consistent with some principles, such as the Lebesgue measura…

    Wikipedia · Nội dung trong CC-BY-SA giấy phép
  3. Axiom of dependent choice - WikiMili, The Best Wikipedia ...

    https://wikimili.com/en/Axiom_of_dependent_choice

    In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis.

  4. Axiom of dependent choice - zxc.wiki

    https://de.zxc.wiki/wiki/Axiom_der_abhängigen_Auswahl

    The axiom of dependent choice (from English axiom of dependent choice or principle of dependent choice for short DC) is an axiom of set theory. It is a weak version of the axiom of choice , but it is sufficient in analysis , for example , to show the equivalence of continuity and continuity of sequences .

  5. Axiome du choix dépendant — Wikipédia

    https://fr.wikipedia.org/wiki/Axiome_du_choix_dépendant
    • L'axiome peut s'énoncer comme suit[2] : pour tout ensemble non videX, et pour toute relation binaire R sur X, si l'ensemble de définition de R est X tout entier (c'est-à-dire si pour tout a∈X, il existe au moins un b∈X tel que aRb) alors il existe une suite (xn) d'éléments de X telle que pour tout n∈N, xnRxn+1. Noter que cet axiome n'est pas nécessaire pour former, pour chaque entier n…
    Xem thêm trên fr.wikipedia.org
    • Thời gian đọc ước tính: 2 phút
    • Mọi người cũng hỏi
      What is the axiom of dependent choice?
      The axiom of dependent choice says that we can form a whole (countably infinite) sequence this way. that is required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step and if some of those choices cannot be made independently of previous choices.
      en.wikipedia.org/wiki/Axiom_of_dependent_choice
      What is the axiom of choice in set theory?
      . In general, the collections may be indexed over any set I, (called index set which elements are used as indices for elements in a set) not just R. In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty.
      en.wikipedia.org/wiki/Axiom_of_choice
      What are some examples of axioms of choice?
      One example is the axiom of dependent choice (DC). A still weaker example is the axiom of countable choice (AC ω or CC), which states that a choice function exists for any countable set of nonempty sets.
      en.wikipedia.org/wiki/Axiom_of_choice
      Can a selection be made without the axiom of choice?
      In many cases, such a selection can be made without invoking the axiom of choice; this is in particular the case if the number of sets is finite, or if a selection rule is available – some distinguishing property that happens to hold for exactly one element in each set. An illustrative example is sets picked from the natural numbers.
      en.wikipedia.org/wiki/Axiom_of_choice
    • Axiom of dependent choice - Wikipedia - it.abcdef.wiki

      https://it.abcdef.wiki/wiki/Axiom_of_dependent_choice

      Da Wikipedia, l'enciclopedia libera In matematica , l' assioma della scelta dipendente , indicato con , è una forma debole dell'assioma della scelta ( ) che è ancora sufficiente per sviluppare la maggior parte dell'analisi reale . È stato introdotto da Paul Bernays in un articolo del 1942 che esplora quali assiomi della teoria degli insiemi sono necessari per sviluppare l'analisi.

    • Axiom der abhängigen Auswahl – Wikipedia

      https://de.wikipedia.org/wiki/Axiom_der_abhängigen_Auswahl
      • Sei X {\displaystyle X} eine nichtleere Menge und R ⊆ X 2 {\displaystyle R\subseteq X^{2}} eine definale Relation. Dann gibt es eine Folge ( x n ) n ∈ N {\displaystyle \left(x_{n}\right)_{n\in \mathbb {N} }} in X {\displaystyle X} dergestalt, dass ∀ n ∈ N : R ( x n , x n + 1 ) {\displaystyle \forall n\in \mathbb {N} \colon R\left(x_{n},x_{n+1}\right)} gilt. Auch ohne abhängige Auswahl ka…
      Xem thêm trên de.wikipedia.org
      • Thời gian đọc ước tính: 2 phút
      • Một số kết quả đã bị xóa


      Results by Google, Bing, Duck, Youtube, HotaVN